The Na/K-ATPase-mediated signal transduction as a target for new drug development.

نویسندگان

  • Zijian Xie
  • Joe Xie
چکیده

The Na/K-ATPase, or Na+ pump, is a member of the P-type ATPase superfamily. In addition to pumping ions, the Na/K-ATPase is a receptor that not only regulates the function of protein kinases, but also acts as a scaffold, capable of tethering different proteins into a signalplex. The signaling Na/K-ATPase resides in caveolae and forms a "binary receptor" with the tyrosine kinase Src. Endogenous cardiotonic steroids and digitalis drugs such as ouabain act as agonists and provoke this binary receptor, resulting in tyrosine phosphorylation of the proteins that are either associated with, or in close proximity to, the signaling Na/K-ATPase. Subsequently, this initiates protein kinase cascades including ERKs and PKC isozymes. It also increases mitochondrial production of reactive oxygen species (ROS) and regulates intracellular calcium concentration. Like other receptors, activation of the Na/K-ATPase/Src by ouabain induces the endocytosis of the plasma membrane Na/K-ATPase. Significantly, this newly appreciated signaling function of the Na/K-ATPase appears to play an important role in the pathogenesis of many cardiovascular diseases, therefore serving as an important target for development of novel therapeutic agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

Protein Interaction and Na/K-ATPase-Mediated Signal Transduction.

The Na/K-ATPase (NKA), or Na pump, is a member of the P-type ATPase superfamily. In addition to pumping ions across cell membrane, it is engaged in assembly of multiple protein complexes in the plasma membrane. This assembly allows NKA to perform many non-pumping functions including signal transduction that are important for animal physiology and disease progression. This article will focus on ...

متن کامل

O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells

Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...

متن کامل

The Na,K-ATPase receptor complex: its organization and membership.

A major difference between the Na,K-ATPase ion pump and other P-type ATPases is its ability to bind cardiotonic steroids such as ouabain. Na,K-ATPase also interacts with many membrane and cytosolic proteins. In addition to their role in Na,K-ATPase regulation, it became apparent that some of the newly identified interactions are capable of organizing the Na,K-ATPase into various signaling compl...

متن کامل

Na/K-ATPase mimetic pNaKtide peptide inhibits the growth of human cancer cells.

Cells contain a large pool of nonpumping Na/K-ATPase that participates in signal transduction. Here, we show that the expression of α1 Na/K-ATPase is significantly reduced in human prostate carcinoma as well as in several human cancer cell lines. This down-regulation impairs the ability of Na/K-ATPase to regulate Src-related signaling processes. A supplement of pNaKtide, a peptide derived from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in bioscience : a journal and virtual library

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2005